

Advances in Networks
2015; 3(3-1): 7-22
Published online September 16, 2015 (http://www.sciencepublishinggroup.com/j/net)
doi: 10.11648/j.net.s.2015030301.12
ISSN: 2326-9766 (Print); ISSN: 2326-9782 (Online)

Implementation of Software-Efficient DES Algorithm

Mohammad Taghipour
1, *

, Arash Moghadami
2
, Behbood Moghadam Naghdi Shekardasht

2

1Industrial Engineering, Science & Research Branch of Islamic Azad University, Tehran, Iran
2Electrical Engineering, Telecommunications, Non-Profit Institute of Higher Education, Aba - Abyek Qazvin, Iran

Email address:
Mohamad.taghipour@srbiau.ac.ir (M. Taghipour), moghadami.arash@yahoo.com (A. Moghadami),
behboodmoghadam@gmail.com (B. M. N. Shekardasht)

To cite this article:
Mohammad Taghipour, Arash Moghadami, Behbood Moghadam Naghdi Shekardasht. Implementation of Software-Efficient DES Algorithm.
Advances in Networks. Special Issue: Secure Networks and Communications. Vol. 3, No. 3-1, 2015, pp. 7-22.
doi: 10.11648/j.net.s.2015030301.12

Abstract: By increasing development of digital telecommunication and the increase of sending and receiving data of various
network of data transfer, protection of the safety of data are the most important necessities of the current world. The increase of
different bank trading, increasing use of smart cards, moving to electronic government, are the examples of significance of this
issue. DES algorithm is introduced by IBM company and is applied for many years by technology and standard institute of US
as data encryption standard algorithm and it is also applied in many applications as networks as ATM and smart cards.
Software-efficient implementation of this algorithm is one of the important research issues for engineers working in this field
as we can perform rapidly on smart cards. In this study, an efficient algorithm implementation by MATLAB and C language is
presented and is compared with the latest works in this field.

Keywords: Digital Telecommunication, Cryptography, Decryption, Safe Communication, DES Algorithm

1. Introduction

The development of internet has made great changes in the
life style and job activity of people, organizations and
institutes. The data security is one of the common issues of
legal and real entities. Assurance of the lack of access of
unauthorized users to sensitive data are the most important
challenges regarding data distribution in internet. Sensitive
information as hidden from other people includes various
items and some of them are:

� Credit card information
� Membership numbers in associations
� Private information
� Details of personal information
� Sensitive information in an organization
� Information of bank accounts
There are not complexities of human relations as mutual

trust in electronic relations and a science should prepare the
conditions and these relations should be guaranteed. Thus,
cryptography is the knowledge of guaranteeing the relations
as without cryptography, there is no guarantee in digital
communication world. Cryptography is the knowledge
dealing with the principles of transfer or storage of
information as secure, even if the transfer path and

communication channels or data storage is insecure.
Cryptography has been used to protect information,
consistency of sent and received data, authentication of
identity and these principles should be observed in each type
of cryptography. Protecting information and confidentiality
means that only the sender and receiver understands the
content of message and it is possible other people can see its
content but its content should be ambiguous from their view.

In the mid 70s, DES algorithm as FIPS – PUB – 46 is
applied as data encryption standard and various institutes as
NIST, IEEE, etc. consider it as an algorithm with suitable
security for the applications without classification. Since then,
hardware and software algorithm implementation is
investigated on various grounds as microcontrollers, smart
cards, FPGAs, etc. in various papers. For example, we can
refer to the followings:

FIPS – PUB – 46-1
FIPS – PUB – 46-2
FIPS – PUB – 46-3
FIPS – PUB – 197
The purpose of this study besides recognition of function

of data encryption algorithm and its simulation in MATLAB
is presenting an efficient implementation of algorithm and
improvement of implementation performance in comparison

8 Mohammad Taghipour et al.: Implementation of Software-Efficient DES Algorithm

with others works.
Study hypotheses are as followings:
� The structure of algorithm and its key length are

defined.
� The implementation is PC and implementation language

is MATLAB and C.
� Having common calculation ability
� Initial recognition of architectures and methods of

algorithm implementation of reported previous works
� Theoretical basics

2. Cryptography

With the advent of computer and increasing their
calculation ability, cryptography entered computer sciences
and this caused three major changes in cryptography:

� High calculation power allowed the possibility that
complex and effective methods are created for
cryptography.

� The cryptography methods that were used for Ciphering
the message had various and new applications.

� Before that, cryptography was mostly on text data and
alphabets but after computer, cryptography was
performed on different data and based on bit.

2.1. The History and Structure of DES Algorithm

DES algorithm was raised in 70s in US as a coding
standard. This algorithm accepts a series of main text with
constant length as input and after doing complex works on its,
output is produced with the length equal to input length. A
key is used for encryption and only those who know the key
value can decode it. Although some analyses are made about
DES more than any other block encryption method, the most
practical attack against this algorithm is comprehensive
search of key space. There are three theoretical attacks for
this algorithm as needing less time compared to
comprehensive searching of key space but these methods are
not possible.

2.2. DES Encryption

Data encryption standard (DES) is a math algorithm
applied for cryptography and Decryption of coded binary
data. Cryptography converts data to Cipher. Decryption of
cipher, returns to the main data. The mentioned algorithm
defines both cryptography and Decryption based on binary
value as key. The data are recovered by cipher, if the same
key is used for Decryption as it was used for encryption.
DES algorithm is composed of two:

DES cryptography algorithm
DES algorithm includes some repetitions of a plain

transformation by substitution and transposition techniques.
This algorithm only applies one key for encryption and
decryption and it is called private key encryption. Thus,
keeping the key as confidential by sender and transmitter is
of great importance as the algorithm is public and in case of
revealing key, any person can see the confidential message.

Thus, in DES cryptography, the life of key is as long as the
life of transaction.

DES cryptography key
DES key is an 8-bit sequence and each bit includes a7-bit

key and a parity bit. During cryptography, DES algorithm
breaks the main text into 64-bit blocks. This algorithm works
on a block and it is broken into half and encryption is done
character to character. Characters are permuted 16 times
under the key supervision and finally an encrypted 64-bit text
is produced. The key with 56 bit is useful and 8-bit is for
parity.

Figure 2-1. Algorithm of DES cryptography method DES algorithm

structure.

In DES, the length of blocks is 64 bit. The key consists of
64 bit but only 56 bits are used and other 8 bits are only used
to check parity. The algorithm includes 16 simialr rounds and
each stage is called a round. The text being encrypted is at
first subject to initial permutation (IP). Then, a series of
complex acts on done on the key and finally it is subject to
final permutation (FP). IP and FP are inverses. FP undoes the
action of IP. IP and FP have no cryptographic significance,
but were included in order to facilitate loading blocks in mid-
1970s 8-bit based hardware but DES was performed slow in

 Advances in Networks 2015; 3(1-3): 7-22 9

software [5]. Before the main round, the block is divided into
two 32-bit halves and processed alternately; this criss-
crossing is known as the Feistel scheme. The Feistel structure
ensures that decryption and encryption are very similar
processes, the only difference is that the subkeys are applied
in the reverse order when decrypting. The rest of the
algorithm is identical. This greatly facilitates implementation,
particularly in hardware, as there is no need for different
encryption and decryption algorithms.

Figure 2-2. General view of algorithm.

The function including IP output and providing FP after 16
input rounds is called function F. This function has a 32-bit
input and a 48-bit input and a 32-bit output. The entrance
block is consists of 32 bits and left half and is denoted by L
and other 32 bits as right half are denoted by R and the entire
block is denoted by LR.

If K is a 48-bit block derived of main 64-bit key and
output of a round with input LR and output L1R1 are defined
as L1=R R1=L XOR F(R, K). If KS is a function with 64-bit
key and an integer ranging 1-16 as input, 48-bit key of KN
generates an output as KN bits are obtained by KEY bits and
we have KN= KS (N.KEY):

KS is called Key schedule function. Thus, we have:
LN=Rn-1 RN =Ln-1 XOR f (Rn-1, KN)
For decryption we have: R=L1 L=R1 XOR f(L1,K). Thus,

decryption is done with the same algorithm as applied for
decryption and in each stage, the same k-bit is used as key
for decryption and we can say:

RN-1=LN LN-1=RN XOR f (LN, KN)

Figure 3-2. Feistel Cipher Structure

To compute decryption R16L16 is input of and R0L0 is
input of FP. The 16th key in the first round, 15th key in the
second round and the first key in 16th round can be used [3].

3. Simulation and Implementation of

DES Algorithm

3.1. Step by Step DES Code

In this algorithm a 64-bit block is received from data
(plaintext) and then a coded 64-bit block is delivered (cipher
text).

This algorithm is composed of 16 rounds, the main
algorithm is coded to generate data and is repeated 16 times.

An important point regarding the above key: in DES
algorithm, the coefficients of 8th bit of key are not used, it
means that bits 8, 16, 24, 32, 40, 48, 56, 64 are not
considered (thus, effective length is 56-bit key).

Now, DES algorithm starts:
First stage

10 Mohammad Taghipour et al.: Implementation of Software-Efficient DES Algorithm

Creating 16 subkeys, each with the length of 48bits
At first, it is required to be familiar with Permuted choice

1 as PC-1:
PC-1
57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4

Since the first entry in the table is 57, this means that the
57th bit of the original key K becomes the first bit of the
permuted key (K+). The 49th bit of the original key becomes
the second bit of the permuted key and this continues. Thus,
based on the above values, we have:

K = 00010011 00110100 01010111 01111001 10011011
10111100 11011111

11110001
K---> (PC-1)--->K+
K+ = 1111000 0110011 0010101 0101111 0101010

1011001 1001111 0001111
Second stage

Then K+ is divided into two 28-bit halves:
C0 = 1111000 0110011 0010101 0101111
D0 = 0101010 1011001 1001111 0001111
As shown, in this stage, 16 sub-keys are created (Cn,Dn)

(n is ranging 1-16). These 16 subkeys are generated of D0,
C0 as followings.

At first, consider the following Table:

Recalling:
1111000011001100101010101111 (1 Rotate left shift)

1110000110011001010101011111
Based on C0, D0 and above shifts Table, we have:
C0 = 1111000011001100101010101111
D0 = 0101010101100110011110001111
C1 = 1110000110011001010101011111
D1 = 1010101011001100111100011110
C2 = 1100001100110010101010111111
D2 = 0101010110011001111000111101
C3 = 0000110011001010101011111111

D3 = 0101011001100111100011110101
C4 = 0011001100101010101111111100
D4 = 0101100110011110001111010101
C5 = 1100110010101010111111110000
D5 = 0110011001111000111101010101
C6 = 0011001010101011111111000011
D6 = 1001100111100011110101010101
C7 = 1100101010101111111100001100
D7 = 0110011110001111010101010110
C8 = 0010101010111111110000110011
D8 = 1001111000111101010101011001
C9 = 0101010101111111100001100110
D9 = 0011110001111010101010110011
C10 = 0101010111111110000110011001
D10 = 1111000111101010101011001100
C11 = 0101011111111000011001100101
D11 = 1100011110101010101100110011
C12 = 0101111111100001100110010101
D12 = 0001111010101010110011001111
C13 = 0111111110000110011001010101
D13 = 0111101010101011001100111100
C14 = 1111111000011001100101010101
D14 = 1110101010101100110011110001
C15 = 1111100001100110010101010111
D15 = 1010101010110011001111000111
C16 = 1111000011001100101010101111
D16 = 0101010101100110011110001111
Now, we apply PC-2 on above pairs to create Kn. This

permutation Table 2 is as followings:

PC-2
14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32

Based on the above calculations we have:
C1D1 = 1110000 1100110 0101010 1011111 1010101

0110011 0011110 0011110
Now, PC-2 should be applied independently on one by one

of 16 sub-keys, for example in K1 (as shown in the above
Table), the first bit is equal to the 14th C1D1 bit, the second
bit K1 equal to the 17th C1D1 bit and so on.

Finally, after applying PC-2 on calculated CnDn, we have:
K1 = 000110 110000 001011 101111 111111 000111

000001 110010
K2 = 011110 011010 111011 011001 110110 111100

100111 100101
K3 = 010101 011111 110010 001010 010000 101100

111110 011001
K4 = 011100 101010 110111 010110 110110 110011

010100 011101
K5 = 011111 001110 110000 000111 111010 110101

001110 101000
K6 = 011000 111010 010100 111110 010100 000111

Number of Rotate left shift Iteration Number

1 1
1 2
2 3
2 4
2 5
2 6
2 7
2 8
1 9
2 10
2 11
2 12
2 13
2 14
2 15
1 16

 Advances in Networks 2015; 3(1-3): 7-22 11

101100 101111
K7 = 111011 001000 010010 110111 111101 100001

100010 111100
K8 = 111101 111000 101000 111010 110000 010011

101111 111011
K9 = 111000 001101 101111 101011 111011 011110

011110 000001
K10 = 101100 011111 001101 000111 101110 100100

011001 001111
K11 = 001000 010101 111111 010011 110111 101101

001110 000110
K12 = 011101 010111 000111 110101 100101 000110

011111 101001
K13 = 100101 111100 010111 010001 111110 101011

101001 000001
K14 = 010111 110100 001110 110111 111100 101110

011100 111010
K15 = 101111 111001 000110 001101 001111 010011

111100 001010
K16 = 110010 110011 110110 001011 000011 100001

011111 110101
Third stage
If we summarize Subkey, we have
C [0]D[0] = PC1(key)
for 1 <= i <= 16
C[i] = LS[i](C[i-1])
D[i] = LS[i](D[i-1])
K[i] = PC2(C[i]D[i])
Then, we start the coding of 64-bit blocks (DES Core

Function). Consider the following Table:
IP
58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7

IP table here means initial permutation and is applied on
initial message, M.

M = 0000 0001 0010 0011 0100 0101 0110 0111 1000
1001 1010 1011 1100 1101 1110 1111

IP = 1100 1100 0000 0000 1100 1100 1111 1111 1111 0000
1010 1010 1111 0000 1010 1010

Like the apply methods of previous tables, 58th bit of M
here as “1” is the first IP bit, then 50th bit of M here is “1”
and it is the second IP bit and so on. Then, IP is divided into
two 32-bit left and right halves:

L0 = 1100 1100 0000 0000 1100 1100 1111 1111
R0 = 1111 0000 1010 1010 1111 0000 1010 1010
The general formula of this 16 rounds is as followings:
L[n] = R [n-1]
R[n] = L[n-1] XOR f(R[n-1],K[n])
Here, n is ranging 1, 16 rounds. Regarding f function, we

explain later.
For example, for N=1, we have:
The items calculated are as:

L [0] = 1100 1100 0000 0000 1100 1100 1111 1111
R [0] = 1111 0000 1010 1010 1111 0000 1010 1010
K [1] = 000110 110000 001011 101111 111111 000111

000001 110010
Then,
L [1] = R[0] = 1111 0000 1010 1010 1111 0000 1010 1010
R [1] = L[0] + f(R[0],K[1])
The rest is regarding explanation of f function

performance in above equation:
To compute f, at first 32-bit R[n-1] should be extended to

48bit. To do this, selection table as E is used: E(R[n-1])
The above function has input bit with 48-bit output. The

table is as:
E BIT-SELECTION TABLE
32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 1

Calculation of function f continues…
Fourth stage
In the continuance of previous section, we calculate E(R

[0]) from R[0]:
R [0] = 1111 0000 1010 1010 1111 0000 1010 1010
E(R [0]) = 011110 100001 010101 010101 011110 100001

010101 010101
As shown, by apply of Table E, each four initial bits are

extended to 6 bits.
In the continuance of calculation of output f E(R[n-1])

with key K[n] is XOR. for example,
K [1] = 000110 110000 001011 101111 111111 000111

000001 110010
E(R [0]) = 011110 100001 010101 010101 011110 100001

010101 010101
K1 XOR E(R [0]) = 011000 010001 011110 111010

100001 100110 010100 100111
Calculation of f is not completed yet. Here, E(R[n]) is

extended from 32 bit to 48 bit by Table E. Then the result
with K[n] is XOR. Now 48bit or eight 6-bit group is the
result. We attribute some names as B [1] to B[8] to these 8
groups. It means that:

K[n] XOR E(R[n]-1) =B [1] B [2] B[3] B[4] B[5] B[6]
B[7] B[8]

Later we refer to another operation on B[i]. Here another
concept as SBoxes is presented. These Tables should be
applied on B[i]. It means that:

S1(B[1]) S2(B[2]) S3(B[3]) S4(B[4]) S5(B[5]) S6(B[6])
S7(B[7]) S8(B[8])

The Tables are as:
S1
14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
S2

12 Mohammad Taghipour et al.: Implementation of Software-Efficient DES Algorithm

15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10
3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5
0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15
13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9
S3
10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8
13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1
13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7
1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12
S4
7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15
13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9
10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4
3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14
S5
2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9
14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6
4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14
11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3
S6
12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11
10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8
9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6
4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13
S7
4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12
S8
13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11
The applying method of S Boxes as different from other

Tables as evaluated in the next section.
Fifth stage
The application method of S-boxes or Substitution boxes
Let we have 48-bit binary value and we want to apply S-

boxes on it:
011101000101110101000111101000011100101101011101
As it was said, eight 6-bit groups are extracted from it

composed of B1 to B8 as:
011101 000101 110101 000111 101000 011100 101101

011101
The following calculations are considered:
B[n] => S[n][row][column]
B[1] => S[1](01, 1110) = S[1][1][14] = 3 = 0011
B[2] => S[2](01, 0010) = S[2][1][2] = 4 = 0100
B[3] => S[3](11, 1010) = S[3][3][10] = 14 = 1110
B[4] => S[4](01, 0011) = S[4][1][3] = 5 = 0101
B [5] => S [5](10, 0100) = S[5][2][4] = 10 = 1010
B [6] => S [6](00, 1110) = S[6][0][14] = 5 = 0101
B [7] => S [7](11, 0110) = S[7][3][6] = 10 = 1010
B [8] => S [8](01, 1110) = S[8][1][14] = 9 = 1001
Calculation method:
B[n] => S[n] [row][column]

n: Is equal to B index
Row: It is created of putting the first and final bit of a 6-bit

group.
Column: The rest of bits creates column (from bits 2-5)
For example:
Consider 011101
As the first 6-bit group is our 48-bit value, n=1.
To create row, two first and final bits are together,

ROW=01
The column is composed of bit 2 to 5, Column=1110
Result:
The first calculation as mentioned in the above:
S[n][row][column] = S[1](01,1110)
To compute this situation in Table S1, at first the values in

parenthesis are converted into their decimal equivalent and
we have:

S[1][1][14]
S1 Table is as followings (For easy reference, the Number

of rows and columns is written, 0-3 as number of rows and 0-
15 as the number of columns (Blue) :

S1 (ROW/Column)
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7
1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8
2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0
3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13
Then, this situation is found in Table S1. We refer to S1

Table and we find the value in row 1 and column. This value
is equal to 3 and then it is converted to binary value. Thus,
we have:

B[1] => S[1](01, 1110) = S[1][1][14] = 3 = 0011
Then, it is applied for other 6-bit groups.
The result is putting together the above results as a 32-bit

binary value.
Sixth stage
After applying substitution Tables or S-boxes on Bis,

another permutation is performed on the result.
Permutation P
16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25

Briefly, f function is computed as:
f = P(S [1](B[1])...S[8](B[8]))
For example:
S1(B1)S2(B2)S3(B3)S4(B4)S5(B5)S6(B6)S7(B7)S8(B8)

= 0101 1100 1000 0010 1011
0101 1001 0111
==>
f = 0010 0011 0100 1010 1010 1001 1011 1011
Then,
R [1] = L[0] XOR f(R[0], K[1])
= 1100 1100 0000 0000 1100 1100 1111 1111
XOR 0010 0011 0100 1010 1010 1001 1011 1011

 Advances in Networks 2015; 3(1-3): 7-22 13

= 1110 1111 0100 1010 0110 0101 0100 0100
L1 was computed already:
L [1] = R[0] = 1111 0000 1010 1010 1111 0000 1010 1010
Here, one round of 16 rounds of algorithm is finished.
Start of second round:
According to the general formula we have:
L [2] = R [1]
R [2] = L [1] + f(R [1], K [2])
Its computation is simple and this trend is continued to the

end of 16 rounds.
At the end of round 16, the result is L16, R16. Here, these

two blocks are changed, it means that
R [16] L [16]
And the final permutation is performed on it as following

Table:
IP^-1
40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27

34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

For example, based on the selected values we have:
L16 = 0100 0011 0100 0010 0011 0010 0011 0100
R16 = 0000 1010 0100 1100 1101 1001 1001 0101
===>
R [16]L[16] = 00001010 01001100 11011001 10010101

01000011 01000010 00110010
00110100
===>
IP^-1 = 10000101 11101000 00010011 01010100

00001111 00001010 10110100
00000101 (bin)
= 85E813540F0AB405 (hex)
Or briefly:
M = 0123456789ABCDEF
The applied key for coding:
Key = 13 34 57 79 9B BC DF F1
Encoded output
C = 85E813540F0AB405

3.2. Simulated Code of DES Algorithm in MATLAB

Clear
tic
M= 'AF88888888555456;’
K = '1256984563214569;’
MB;[]=
for i=1;16
Mi=M(I;(
MBi=[‘0000’,,dec2bin(hex2dec(Mi;[((
MBi=MBi(end-3;end;(
MBi=[str2num(MBi(1)),str2num(MBi(2)),str2num(MBi(3)),str2num(MBi(4;]((
MB=[MB,MBi ;[
end
M=MB;
KB ;[]=
for i=1;16
Ki=K(i ;(
KBi=[‘0000',dec2bin(hex2dec(Ki ;[((
KBi=KBi(end-3; end;(
KBi=[str2num(KBi(1),str2num(KBi(2)),str2num(KBI(3)),str2num(KBi(4 ;[((
KB=[KB,KBi;[
end
K=KB;
E=[32, 1, 2, 3, 4, 5;

9, 8, 7, 6, 5, 4;
9, 10, 11, 12, 13, 8;
12, 13, 14, 15, 16, 17;
16, 17, 18, 19, 20, 21;
20, 21, 22, 23, 24, 25;
24, 25, 26, 27, 28, 29;
28, 29, 30, 31, 32, 1;
S1=14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7;
8, 3, 5, 9, 11, 12, 6, 10, 1, 13, 2, 14, 4, 7, 15, 0;
0, 5, 10, 3, 7, 9, 12, 15, 11, 2, 6, 13, 8, 14, 1, 4;
13, 6, 0, 10, 14, 3, 11, 5, 7, 1, 9, 4, 2, 8, 12, 15;
S2= 15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10;
5, 11, 9, 6, 10, 1, 0, 12, 14, 8, 2, 15, 7, 4, 13, 3;

14 Mohammad Taghipour et al.: Implementation of Software-Efficient DES Algorithm

15, 2, 3, 9, 6, 12, 8, 5, 1, 13, 4, 10, 117, 14, 0;
9, 14, 5, 0, 12, 7, 6, 11, 2, 4, 15, 3, 1, 10, 8, 13;
S3=10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8;

P=[16,7,20,21,29,12,28,17,1,15,23,26,5,18,31,10,2,8,24,14,32,27,3,9,19,13,30,6,22,1 1,4,25 ;[

PC1=[57,49,41,33,25,17,9,1,58,50,42,34,26,18,10,2,59,51,43,35,27,19,11,3,60,52,44,

36,63,55,47,39,31,23,15,7,62,54,46,38,30,22,14,6,61,53,45,37,29,21,13,5,28,20,12,4 ;[

PC2=[14,17,11,24,1,5,3,28,15,6,21,10,23,19,12,4,26,8,16,7,27,20,13,2,41,52,31,37,4

7,55,30,40,51,45,33,48,44,49,39,56,34,53,46,42,50,36,29,32 ;[

Ki=zeros(16,48 ;(

K_PC1=K(PC1 ;(

CO=K_PC1(1;28 ;(

DOK_PC1(29;56 ;(

for i=1;16

if i==1| | i==2| | i==9| |I==16

1, 15, 11, 12, 14, 5, 8, 2, 10, 6, 4, 3, 9, 0, 7, 13;
7, 14, 10, 5, 12, 2, 1, 11, 0, 3, 15, 8, 9, 4, 6, 13;
12, 2, 5, 11, 3, 14, 15, 47, 8, 9, 6, 0, 13, 10, 1;
S4= 7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15;
9, 14, 10, 1 12, 2, 7, 4, 3, 0, 15, 6, 5, 11, 8, 13;
4, 8, 2, 5, 14, 3, 1, 15, 137, 11, 12, 0, 9, 6, 10;
14, 2, 7, 12, 11, 5, 4, 9, 8, 13, 1, 10, 6, 0, 15, 3;
S5= 2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9;
6, 8, 9, 3, 10, 15, 0, 5, 1, 13, 7, 4, 12, 2, 11, 14;
14, 0, 3, 6, 5, 12, 9, 15, 8, 7, 13, 10, 11, 1, 2, 4;
3, 5, 4, 10, 9, 0, 15, 6, 13, 2, 14, 1, 7, 12, 8, 11;
S6=12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11;
8, 3, 11, 0, 14, 13, 1, 6, 5, 9, 12, 7, 2, 4, 15, 10;
6, 11, 13, 1, 10, 4, 0, 7, 3, 12, 8, 2, 5, 15, 14, 9;
13, 8, 0, 6, 7, 1, 14, 11, 10, 15, 5, 9, 12, 2, 3, 4;
S7=4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1;
6, 8, 15, 2, 12, 5, 3, 14, 10, 1, 9, 4, 7, 11, 0, 13;
2, 9, 5, 0, 8, 6, 15, 10, 14, 7, 3, 12, 13, 11, 4, 1;
12, 3, 2, 14, 15, 0, 5, 9, 7, 10, 4, 1, 8, 13, 11, 6;
S8=13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7;
2, 9, 14, 0, 11, 6, 5, 12, 4, 7, 3, 10, 8, 13, 15, 1;
8, 5, 3, 15, 13, 10, 6, 0, 2, 14, 12, 9, 1, 4, 11, 7;
11, 6, 5, 3, 0, 9, 12, 15, 13, 8, 10, 4, 7, 14, 1, 2;

P=[16,7,20,21,29,12,28,17,1,15,23,26,5,18,31,10,2,8,24,14,32,27,3,9,19,13,30,6,22,1 1,4,25 ;[

PC1=[57,49,41,33,25,17,9,1,58,50,42,34,26,18,10,2,59,51,43,35,27,19,11,3,60,52,44,

36,63,55,47,39,31,23,15,7,62,54,46,38,30,22,14,6,61,53,45,37,29,21,13,5,28,20,12,4 ;[

 Advances in Networks 2015; 3(1-3): 7-22 15

PC2=[14,17,11,24,1,5,3,28,15,6,21,10,23,19,12,4,26,8,16,7,27,20,13,2,41,52,31,37,4

7,55,30,40,51,45,33,48,44,49,39,56,34,53,46,42,50,36,29,32 ;[

Ki=zeros(16,48 ;(

K_PC1=K(PC1 ;(

CO=K_PC1(1;28 ;(

DO=K_PC1(29;56 ;(

for i=1;16

if i==1| | i==2| | i==9| |I==16

1, 15, 11, 12, 14, 5, 8, 2, 10, 6, 4, 3, 9, 0, 7;
7, 14, 10, 5, 12, 2, 1, 11, 0, 3, 15, 8, 9, 4, 6, 13;
12, 2, 5, 11, 3, 14, 15, 4, 7, 8, 9, 6, 0, 13, 10, 1;
S4=7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15;
9, 14, 10, 1, 12, 2, 7, 4, 3, 0, 15, 6, 5, 11, 8, 13;
4, 8, 2, 5, 14, 3, 1, 15, 13, 7, 11, 12, 0, 9, 6, 10;
14, 2, 7, 12, 11, 5, 4, 9, 8, 13, 1, 10, 6, 0, 15, 3;
S5=2, 13, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9;
6, 8, 9, 3, 10, 15, 0, 5, 1, 13, 7, 4, 13, 2, 11, 14;
14, 0, 3, 6, 5, 12, 9, 15, 8, 7, 13, 10, 11, 1, 2, 4;
3, 5, 4, 10, 9, 0, 15, 6, 13, 2, 14, 1, 7, 12, 8, 11;
S6=12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11;
8, 3, 11, 0, 14, 13, 1, 6, 5, 9, 12, 7, 2, 4, 15, 10;
6, 11, 13, 1, 10, 4, 0, 7, 3, 12, 8, 2, 5, 15, 14, 9;
13, 8, 0, 6, 7, 1, 14, 11, 10, 15, 5, 9, 12, 2, 3, 4;
S7=4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1;
6, 8, 15, 2, 12, 5, 3, 14, 10, 1, 9, 4, 7, 11, 0, 13;
2, 9, 5, 0, 8, 6, 15, 10, 14, 7, 3, 12, 13, 11, 4, 1;
12, 3, 2, 14, 15, 0, 5, 9, 7, 10, 4, 1, 8, 13, 11, 6;
S8=13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7;
2, 9, 14, 0, 11, 6, 5, 12, 4, 7, 3, 10, 8, 13, 15, 1;
8, 5, 3, 15, 13, 10, 6, 0, 2, 14, 12, 9, 1, 4, 11, 7;
11, 6, 5, 3, 0, 9, 12, 15, 13, 8, 10, 4, 7, 14, 1, 2;

16 Mohammad Taghipour et al.: Implementation of Software-Efficient DES Algorithm

D0=[D0(2;end),D0(1 ;[s

else

CO=[CO(3;end),CO(1.2 ;[(

D0=[DO(3;end),DO(1.2 ;[(

end

K_LS=[CO,D0 ;(

Ki(i,;)=K_LS(PC2 ;(

end

L=M(1;32 ;(

R=M(33;64;(

for i=1;16

E0=reshape(E',1,48 ;(

R_E=R(EO ;(

R_Ki=mod(R_E+Ki(i,;),2 ;(

B=R_Ki(1;6;(

x=B(1)*2+B(6)+1

y=B(2)*8+B(3)*4+B(4)*2+B(5)+1

C=['0000',aec2bin(S1(x,y [((

C=C(end-3;end ;(

C1=[str2num(C(1)),str2num(C(2)),str2num(C(3)), str2num(C(4 ;(([

B=R_Ki(7;12;(

x=B(1)*2+B(6)+1 ;

y=B(2)*8+B(3)*4+B(4)*2+B(5)+1 ;

C=['0000',aec2bin(S2(x,y [((

C=C(end-3;end ;(

C2=[str2num(C(1)),str2num(C(2)), str2num(C(3)), str2num(C(4 ;(([

B=R_Ki(13;18;(

x=B(1)*2+B(6)+1 ;

y=B(2)*8+B(3)*4+B(4)*2+B(5)+1 ;

C=['0000', dec2bin(S3(x,y [((

C=C(end-3;end (

 Advances in Networks 2015; 3(1-3): 7-22 17

C3=[str2num(C(1)),str2num(C(2)),str2num(C(3)), str2num(C(4 ;(([

B=R_Ki(19;24;(

x=B(1)*2+B(6)+1 ;

y=B(2)*8+B(3)*4+B(4)*2+B(5)+1 ;

C=['0000", dec2bin(S4(x,y [((

C=C(end-3;end ;(

C4=[str2num(C(1)),str2num(C(2)),str2num(C(3)), str2num(C(4 ;(([

B=R_Ki(25;30;(

x=B(1)*2+B(6)+1 ;

y=B(2)*8+B(3)*4+B(4)*2+B(5)+1 ;

C=['0000", dec2bin(S5(x,y [((

C=C(end-3;end ;(

C5=[str2num(C(1)), str2num(C(2)), str2num(C(3)), str2num(C(4 ;[((

B=R_Ki(31;36 (

x=B(1)*2+B(6)+1 ;

y=B(2)*8+B(3)*4+B(4)*2+B(5)+1 ;

C=['0000', dec2bin(S6(x,y [((

C=C(end-3;end ;(

C6=[str2num(C(1)),str2num(C(2)),str2num(C(3)), str2num(C(4 ;[((

B=R_Ki(37;42 ;(

x=B(1)*2+B(6)+1 ;

y=B(2)*8+B(3)*4+B(4)*2+B(5)+1 ;

C=['0000", dec2bin(S7(x,y [((

C=C(end-3;end (C7=[str2num(C(1)),str2num(C(2)),str2num(C(3)), str2num(C(4 ;[[(

B=R_Ki(43;48;(

x=B(1)*2+B(6)+1 ;

y=B(2)*8+B(3)*4+B(4)*2+B(5)+1 ;

C=['0000',aec2bin(S8(x,y ;[((

C=C(end-3;end (C8=[str2num(C(1)),str2num(C(2)), str2num(C(3)), str2num(C(4 ;[[(

C=[C1,C2, C3,C4,C5,C6,C7, C8 ;[

18 Mohammad Taghipour et al.: Implementation of Software-Efficient DES Algorithm

R_P=C(P ;(

TEMP=L;

L=R ; R=mod(TEMP+R_P,2 ;(

end

TEMP=L;

L=R ;

R=TEMP ;

C=[L,R ;[

CS ;[]-

C=num2str(C (

pos=find(C ;(''--

C=C(pos ;(

for i=1;4;61

Ci=C(i;i-H3 (

CS=[CS, num2str(dec2hex(bin2dec(Ci ;[(((

end

C=CS

t=toc

C= B49584B65CD90953

T=0.2895

After performing the above code in MATLAB, we have R=TEMP

3.3. Implementation of DES Algorithm in C++ Application

#include;stdio.h>
#include;fstream.h>
#include;string.h>
#include;conio.h>
#include;iostream.h>

int key(64]={
0,0,0,1,0,0,1,1,
0,0,1,1,0,1,0,0,
0,1,0,1,0,1,1,1,
0,1,1,1,1,0,0,1,
1,0,0,1,1,0,1,1,
1,0,1,1,1,1,0,0,
1,1,0,1,1,1,1,1,
1,1,1,1,0,0,0,1
};

class Des
{
public;
int

 Advances in Networks 2015; 3(1-3): 7-22 19

keyi[16][48), total[64), left|32), right|32), ck[28), dk[28), expansion[48),z[48),xor1[48), sub[32],p[32],xor2[32],temp[64],
pc1[56],ip[64],inv[8][8];
char final[1000];
void IP();
void PermChoice1();
void PermChoice2();
void Expansion();
void inverse();
void xor two();
void xor oneE(int);
void xor oneD(int);
void substitution();
void permutation();
void keygen();
char* Encrypt(char *);
char * Decrypt(char *);
};
void Des;;IP()
{

int k=58,i;
for(i=0;i < 32;i++)
{

ip[i]=total[k-1];
if(k-8>0) k=k-8;
else k=k+58;

}
k=57;
for(i-32;i < 64;i++)
{

ipsi]=total[k-1];
if(k-8 > 0) k=k-8;
else k=k+58;

 }
}
void Des;;PermChoice1()
{

int k=57,i;
for(i-0;i < 28;i++)
{

pc1[i]=keysk-1];
if(k-8 > 0) k=k-8;
else k=k+57;

}
k=63;
for(i-28;i < 52;i++)
{

pc1(i)=keysk-1];
if(k-8 > 0) k=k-8;
else k=k+55;

}
k=28;
for(i=52;i < 56;iłł)
{

pc1(i)=keysk-1];
k=k-8;

}
}
void Des;;Expansion()
{

20 Mohammad Taghipour et al.: Implementation of Software-Efficient DES Algorithm

int exp(8][6],i,j,k;
for(i-0;i < 8;i++)
{

for(j=0;j< 6;j++)
{

if((j!=0)||(j!=5))
{

k=4*i+j;
expsi][j]=right[k-1];
}
if(j==0)
{

substitution();
permutation();
xor two();
for(i-0;i < 32;i++) left[i]=right[i];
for(i-0;i < 32;i++) right[i]=xor2|[i];
}
for(i-0;i < 32;i++) tempsi]=right[i];
for(;i < 64;i++) tempsi]=left[i-32];
inverse();

k=128; d-O;
for(i-0;i < 8;i++)
{
 for(j=0;jo 8;j++)
 {

d=d+inv[i][j]*k;
k=k/2;

 }
final[mc++]=(char)d;
k=128; d-0;

 }
}
final[mc]='\0';
return(final);
}
char * Des;;Decrypt(char *Text!)
{
int i, a1,j, nB,m, iB,k,K,BI8],n,t,d, round,
char *Text=new char(1000];
unsigned char ch;
strcpy(Text,Text1);
i=strlen(Text);
keygen();
int mo-O;
for(iB=0,nB=0,m=0;m « (strlen(Text)/8);m #4)
{

for(iB=0, i=0;i < 8;i++,nB++)
{
ch=Text[nB],
n=(int)ch ;
for(K=7;n >= 1;K--)
{
B[K]=no}{2; n/=2;
} for(;K->= 0;K--) BIK)=0;
for(K=0;K <8;K++,iB++) total[iB]=B[K]; } |P();
}

 IP();
for(i-0;i < 32;i++) left[i]=total[i];

 Advances in Networks 2015; 3(1-3): 7-22 21

for(;i < 64;i++) right[i-32]=total[i];
for(round=1;round <= 16;round++)
{

Expansion();
xor_ones) (round);
substitution();
permutation();
xor two();
for(i-0;i < 32;i++) left[i]=right[i];
for(i=0;i < 32;i++) right[i]=xor2|[i];
}
for(i-0;i < 32;i++) tempsi]=right[i];
for(;i < 64;i++) tempsi]=left[i-32];
inverse();

k=128; d-0;
for(i=0;i < 8;i++)
{
for(j=0;jo 8;j++)
{

d=d+inv[i][j]*k;
k=k/2;

}
final[mc++]=(char)d;
k=128; d-O;

}
} final[mc]='\0';
char *final|1=new char[1000];
for(i=0,j=strlen(Text);i < strlen(Text);i++, ++)

final1(i)=finals]]; final1(i)="\O';
return(final);
}
int main()
{
Des d1,d2;
char *strznew char(1000];
char *str1=new char(1000];
//crls();
coutok"Enter a string ; ";
gets(str);
str1=d1.Encrypt(str);
cout<<"\n Plain Text; "<< strz< endl;
cout<<"\nCipher Text ; "<< str1<< endl;
cout<<"\nPlain Text;"<< d2.Decrypt(str1)<< endl;
getch();
return 0;
}
void Des;;keygen()
{

Permchoice1();
int i,j,k=0;
for(i-0;i < 28;i++)
{

ck[i]=pc.1[i];
}
for(i=28;i < 56;iłł)
{

dk[k]=pc1[i);
k++;

}

22 Mohammad Taghipour et al.: Implementation of Software-Efficient DES Algorithm

int noshift=0,round;
for(round=1;round;-16;round++)
{

if(round==1| |round==2| |round==9] Iround==16)
noshift=1;

else
noshift=2;

while(noshift × 0)
{

int t;
t=ck[0];
for(i=0;i < 28;i++)
ck[i]=ck[i+1];
ck[27]=t;
t=dk[0];
for(i-O;i < 28;i++)
dk{i}=dk[i+1);
dk[27)=t;
noshift--;

}
PermChoice2();
for(i-0;i < 48;i++)

keyi[round-1][i]=z[i];
}

}

Enter a string ; arash
Plain Text ; arash
cipher Text; ÓÓ||

4. Conclusion

DES algorithm is one of the most important and common
cryptography algorithms as applied in security of many
applications as financial transaction, data transfer, smart
cards, etc. In software implementation of this algorithm, it is
always considered by researchers and experts in this field.
Despite the significance of this issue, it is not considered
mostly in our country. In this thesis, besides recognition of
the function of this algorithm and simulation of algorithm
performance in MATLAB, an efficient implementation by C
language is performed. One of the results of this thesis is
providing security of various systems as sending and
receiving important data without classification. Also, smart
cards or various security transactions can be used. The results
also can be used to implement secure and recognize
algorithm of 3-DES.

References
[1] B. Schneir, Applied cryptography, John Wiley, 1996.

[2] A. Saloma, Public key cryptography, 1990.

[3] G. Brassard,”Modern cryptography, a tutorial”, 1988.

[4] C. G. Shannon,”Communication theory in security systems”,
Bell Sys. Tech. Journal, Vol.28, Oct. 1949.

[5] W. Diffie and M. Hellman,”New directions in cryptography”,
IEEE trans. On IT, Vol. 22, Nov. 1976.

[6] W. Diffie and M. Hellman,"Privacy and Authentication: An
introduction to cryptography, New directions in cryptography",
IEEE trans, Vol. 67, 1979.

[7] J.L. Massey, "An Introduction to contemporary cryptography",
IEEE Proc, Vol.76, May 1983.

[8] Chan, M.H.L and Donaldson, R.W. "Amplitude, width and
interarrival distributions for noise impulses on intrabuilding
power line communication networks", IEEE Trans.
Electromagn. Compat. Vol. EMC-31, pp320-323, Aug 1989.

[9] Canete, F. Cort´es, J. D´iez, L and Entrambasaguas, J. “A
channel model proposal for indoor power line
communications,” in IEEE Communications Magazine,
January 2011.

[10] Marihart, D. J. “Communications Technology Guidelines for
EMS/SCADA Systems” IEEE TRANS. ON POW.DELIVERY,
VOL. 16, NO. 2, APRIL 2001.

[11] Dostert, K "Telecommunications over the Power Distribution
Grid- Possibilities and Limitations”, Proc 1997
Internat.Symp.on Power Line Comms and its Applications
pp1-9, 1997.

